
第一章:裝備篇

所謂「工欲善其事,必先利其器」,跑 步訓練當然也應該從跑步的裝備說起。

跑步的服装

报的主要作用是保溫,因為穿上衣服後,便會把一層薄薄的空氣包裹著身體,由於空氣是不良的導體,有絕緣的作用,所以就能夠防止體熱的流失。衣服的絕緣能力是以**克洛**(CLO)計算,相當於一套「商務服裝」所能夠提供的禦寒能力。

在炎炎的夏日,有些男士愛裸著上身, 只穿上短褲跑步,這就僅有 0.15 克洛的禦 寒能力;反觀在北極生活的愛斯基摩人, 在攝氏 -55 度的嚴寒天氣下,如果在靜止 的情況下要保持體溫,就非要穿上有 10 至 12 克洛禦寒能力的衣服不可了。

在極端寒冷的天氣下進行跑步時,除了要穿夠衣服保暖外, 還要特別留意風速和跑速。

風速

身體除了會因為低溫而感到寒冷外,風速也會影響到身體對寒冷的感覺。在「風寒效應」之下,無論是靜止或做運動,風速越高,衣服的禦寒能力也要越高。

風寒溫	強度	溫度 (攝氏)					
/3//2/11			8	6	4	2	
	10	9	6	4	1	-1	
空	20	7	5	2	0	-3	
風速 (公里/小時)	30	7	4	1	-1	-4	
	40	6	3	1	-2	-5	
	50	5	3	0	-3	-5	

第一章:裝備篇

從上表可見,在 10 公里/小時的風速下,就會感到溫度低了攝氏 1 至 3 度;但是如果風速去到 50 公里/小時的時候,所感受到的溫度就會低上攝氏 5 至 7 度了。

跑速

正如先前提及過,在攝氏 -55 度的天氣下,靜止的時候要保持體溫,就要穿上近 12 克洛的衣服。就算是以 16 公里/小時,亦即是 3 分 45 秒跑 1 公里,又或者是 2 小時 38 分跑馬拉松的速度去跑的話,都要穿上 1.25 克洛的衣服。如果放慢跑速至 10 公里/小時,亦即是 6 分鐘跑 1 公里的話,就要穿上 3 克洛的衣服。若果再放

慢至 5 公里/小時的速度去步行的話, 就要穿上 5 克洛的衣服了。

由此可見,在這類極端嚴寒的

天氣下跑步或比賽,最重 要的就是全程都能夠保持 著「相對」穩定的速度去跑; 否則,被迫放慢腳步或者停 下來休息的時候,就會增加 了出現體溫過低的機會。

反觀在炎熱的天氣下 進行跑步時,衣服的作用除 了是遮蔽身體外,就是要促 進體熱的散發。人靜止時的 正常體溫大約是攝氏 37 度,

第1頁

65042

「劇烈」運動(如馬拉松)時,體溫可以 升高至攝氏 39 度,甚至是超過攝氏 40 度。 就算是進行「中等強度」的運動,體溫仍 會按照每小時攝氏 1 度左右的速度上升。 所以,如果缺乏有效降溫的機制,就會有 機會危及健康。

跑步時的體熱可以透過 4 種不同的途 徑來散發:

- 1. 傳導(conduction):表面的接觸
- 2. 對流 (convection): 氣體和液體流動
- 3. 輻射 (radiation): 熱浪
- 4. 汗液蒸發(evaporation of sweat)

靜止的時候,60%左右的體熱是靠「輻射」來散發,但太陽的熱力和其他物體產生出來的熱力,也可以藉著輻射讓人體吸收,使體溫升高。衣服的其中一個作用,就是阻擋這種從輻射而來的熱力。此外,衣服亦能夠阻隔可以灼傷皮膚的紫外線。

跑步的時候,高達 80%的體熱會轉靠「汗液蒸發」來排出體外。過緊的衣物會因為與皮膚的接觸而濕透(尤其是棉質的衣物),使到衣物與皮膚間的空隙充滿著水氣,導致皮膚週圍的濕度上升,就會減慢了汗液蒸發的速度。因此,炎夏跑步時應穿著較寬鬆的衣服,藉著衣服的顫動來煽動氣流,促進以「對流」來散熱的效果。

最後,除非身體是浸在水裡或接觸著 冰凍的物體,以「傳導」來散熱的作用只 是微乎其微。至於顏色方面,雖然深色的 物料較吸熱和表面的溫度也較高,但只要 物料並不是「緊貼」著皮膚,就不會把熱 力傳導至人體。如果是選擇較淺色的衣服, 亦要確保其物料能有效阻隔紫外線。

就以香港來說,夏季的氣溫可以高達 攝氏 34 度或以上,所以比較適宜穿上輕 便和透氣的服裝。有些男士喜歡在夏日裸 著上身來跑步,覺得這樣會比較涼快。其實,這樣會吸收到過多的紫外線,不但容易灼傷皮膚,甚至會增加患上皮膚癌的風險。此外,在陽光猛烈的時候,最好還要戴上帽子和太陽眼鏡,好好保護眼睛。

就算在冬季,香港的氣溫也很少會低 過攝氏 10 度,所以跑步時只要再添加一 件長袖外套已是相當足夠。如果仍然怕不 夠暖,穿著幾件較薄的衣服會比穿著一件 厚身的更為溫暖,也方便熱身之後把外層 的衣物逐一脫下來。不過,如果比賽當日 遇上特別嚴寒的天氣,就要仔細去想想應 該如何配搭需要穿上的衣物了,而且頭、 面和手部的保溫也是不容忽視。

就以 2018 年的波士頓馬拉松比賽為例,當時的溫度就只有攝氏 3 至 7 度,而且風速還超過每小時 25 英哩(即每小時40 公里),並且在大雨之下進行,最終導致超過 23 名精英跑手因為哮喘發作或者是體溫過低而被迫中途棄賽。此外,大部分的跑手都加穿了外套參賽,這也或多或少會因為風阻增加而影響了他們的表現。反觀冠軍的川內優輝選手,他只是穿上背心短褲,再加上手袖和鴨咀帽就去比賽了。

第一章: 裝備篇

襪子和壓力襪

著 養子除了可以吸收腳汗,保持腳部衛生之外,還可以作為第二層皮膚,減少腳部因磨擦而起水泡的機會,有些人甚至會穿上兩對襪子來行山或跑步。不過,關鍵仍然是要保持襪子的乾爽,否則一樣難以避免起水泡的機會。

近年亦多了人喜歡穿著壓力襪。其實壓力襪是緣起於醫療用途,主要用來舒緩靜脈曲張。不過,大約從 2000 年開始,就多了人在運動訓練及比賽中穿著壓力襪。

穿著壓力襪的理念,就是希望可以透 過調節腿部所承受的壓力,促進血液循環 或血液回流心臟,從而提升運動表現。不 過,研究結果普遍「並不」支持這種說法。

另一方面,亦有些人認為,基於同樣 的理念,穿著壓力襪就可以促進運動後的 恢復。不過,亦只有很少部分的研究是支 持這一種說法,而且極其量亦只有「一點 兒」效用而矣。

大部分的壓力襪,都是屬於所謂的「漸進式」壓力襪。亦即是說,近腳眼的

最力大是上使逐由縮的緊也,逐放到漸於少直,是而漸鬆壓減通靜徑壓最且向,力少過脈,

位置收得

就能夠增加血流的速度,所以透過壓力襪 去改變腿部壓力的「坡度」(gradient),就 能夠促進血液回流心臟了。 不過,壓力襪的鬆緊,亦即是施加於腿上的壓力,始終是成功與否的關鍵。如果太鬆又會起不到甚麼作用,但太緊又可能會妨礙血液循環。一般來說,20 mmHg以下屬於低壓力,20至30 mmHg屬於中等壓力,30 mmHg以上就屬於高壓力。

影響壓力襪壓力的因素包括:物料的 彈性及剛度,還有就是穿著者的腿型及大小(並非腳的大小)。因此,壓力襪的尺碼 是否合適就非常重要。

整體來說,穿著壓力襪(無論是否漸進式),對運動表現「並無」顯著幫助;極其量只是對長時間耐力運動(如馬拉松長跑)或阻力訓練之後的恢復「有點兒」幫助。因此,穿著與否,就純屬個人對美觀、舒適度、實際感受(無論是心理還是生理)及價錢的決定。

至於穿著其他的一些特別衣物,如緊身衣、緊身褲等的理念,其實和穿著壓力 襪也是差不多的。緊身的衣物,對短跑運 動員來說,可能都有點兒幫助,因為應該 可以減低一些風的阻力。但是,對長跑運 動員來說,似乎就沒有多大的幫助了。而 且衣物一旦是過於緊迫,就有可能妨礙到 血液循環,反而對運動的表現會產生負面 的影響。

跑鞋

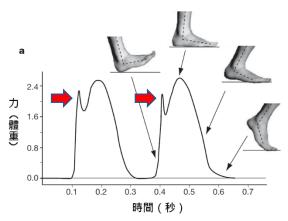
很多人 為跑鞋是

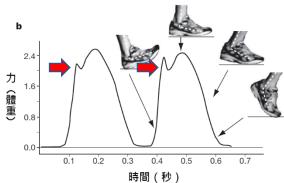
跑步的「最重要」裝備,更有不少人願意 花上接近二千元去購買一對跑鞋,並且希 望藉此提升跑步表現和減少跑步受傷的 風險。

不過,有些學者卻指出,現代的跑鞋 在 1970 年代才誕生,但是人類從事長跑 活動,就已經有過百萬年的歷史。在人類 進化的大部分歷程當中,跑步的時候都是 赤足或者只是穿上很簡單的鞋類(如涼鞋 或者是一些軟皮的平底鞋),這些鞋類的 緩衝能力,都遠低於現今的跑鞋。

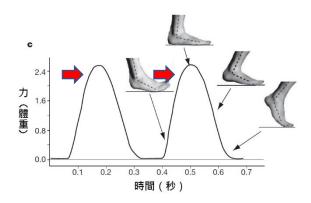
應力」(repetitive stress)而造成的創傷(如應力性骨折,stress fracture)。而且,就算最近幾十年來的做鞋技術得到不斷改良,發生這類跑步受傷的情況都是未見得有「顯著」的改善。再加上部分廣告的誇大失實,往往使到穿著貴價運動鞋的人士,過度倚賴運動鞋的緩衝能力,反為降低了腳著地時的「警覺性」,以致受傷的機會,反而比穿著平價運動鞋的人還要高。

部分學者們認為跑步時最容易受傷的時刻,就是當腳部著地時撞擊地面的一

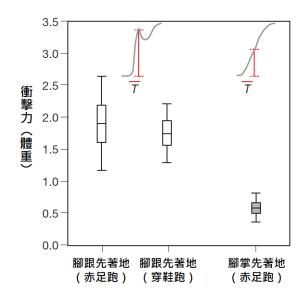

瞬間。腳部著地的方式一般可以被分為三 大類:


第一章:裝備篇

- 1. **腳跟**先著地 (rear-foot strike, RFS);
- 2. **腳掌**和**腳跟**「同時」著地(mid-foot strike, MFS),亦即**全腳著地**;及
- 3. **腳掌**先著地(forefoot strike,FFS)。



研究發現,不論是赤足跑(見圖 a)還是穿鞋跑(見圖 b),如果以腳跟先著地,便要反復應對來自地面「垂直反作用力」(vertical ground reaction force)形成的短暫衝擊力(相當於體重的 1.5 至 3 倍),增加跑步受傷,特別是「脛骨應力性骨折」(tibial stress fracture)和「足底筋膜炎」(plantar fasciitis)的機會。



反過來說,若果以腳掌先著地(見圖 c),就算是赤足跑,都不需要應對類似的 衝擊力。

而且在相同速度之下, 腳掌先著地比 腳跟先著地要承受的衝擊力少幾倍。

雖然,腳跟較厚的跑鞋具有較佳的緩 衝能力,但它們卻會限制了跑步者的「本 體感受」(proprioception),並且使到跑步 者較容易以腳跟先著地。

有學者指出,腳底的神經支配十分豐富,僅次於手掌。腳底的感覺會引起一套

腳底表面的「保護反應」以減輕著地時

的衝擊力,穿著緩衝力強

的跑鞋反而會降低 了這種減輕衝擊力 的本能反應,結果使 到要承受的衝擊力增加。 另一方面,有研究發現,自幼穿鞋的 跑步者多以腳跟先著地;自幼赤足或已轉 為赤足跑的跑步者,無論在赤足或穿鞋跑 時,多以腳掌先著地,腳跟隨後才著地的 跑法(不過,他們有時亦會腳掌和腳跟同 時著地)。此外,赤足跑時,跑步者的步幅 明顯減少、步頻明顯增加、每步間的時間 及騰空時間縮短、從地面而來的衝擊力也 較小。因此,有些跑步人士便嘗試開始, 甚至提倡赤足跑,希望減少跑步受傷的風 險。

其實,赤足跑本身並無任何新意可言, 早於 1960 年的羅馬奧運會,埃塞俄比亞 運動員 Abebe Bikila 便在赤足跑的情況下, 奪得馬拉松長跑的冠軍,並且以 2:15:16 的 成績刷新世界紀錄。其後,南非的「赤腳 仙子」Zola Budd 更分別在她 17 和 19 歲 時,以 15:01.8 及 14:48.09 的成績,兩度 以赤足跑打破女子 5000 米的世界紀錄。

雖然,赤足跑似乎有一定的吸引力, 但對於大部分的跑步者來說,都是自幼習 慣穿著鞋子,所以就算想開始練習赤足跑, 都應該要循序漸進,把赤足跑練習的哩程 逐漸增加,不要一下子就跑上太遠的距離,

而且還要小心跑道或道路上是否

有異物,以免弄傷腳底。

對於大部分習慣穿鞋 的城市人來說,還是較 建議穿著跑鞋來跑步, 特別是薄底的款式,因

第一章: 裝備篇

為這樣就不致於會過度降低腳底的保護 反應,又可以保護腳底被異物弄傷。始終 對自幼穿慣鞋走路的人來說,腳底的皮膚 都是比較幼嫩。

購買跑鞋的時候,應該按照個人腳部的結構特點(如腳前掌的闊窄、足弓的高低)來選購適合自己的跑鞋。而且最好在下午或夜晚才去選購,因為經過了差不多一整天後,腳部已經充分漲大,不會出現買了之後又覺得跑鞋過度緊迫的情況。

試跑鞋的時候,最好也先穿上跑步時會穿著的襪子(包括壓力襪)才去試。穿上的時候,鞋的大小要適宜,不可過鬆或過緊。穿好了鞋之後,最好盡量在店舖之內走幾步,甚至是跑上幾步,確保鞋的尺碼大小真的合適。

第一次穿上「新」跑鞋去練習跑步的時候,不要跑超過平日訓練距離的 30 至

50%,應該逐 次把跑的距 離(亦即是 穿鞋的時間) 增長,直至 回復到正常 的訓練距離。

計時器

多初學者以為計時的目的,就是要看 一看有沒有比上次跑得快。這個雖 然是其中的一個作用,但也絕非是計時的 唯一作用。一般來說,計時器的作用包括:

1. 得知進度

每一節的訓練課,都應該有特定的訓練目標。在一些模擬的計時跑訓練課當中,我們當然想看看有沒有比過往跑得快,但是我們也不是要在每一次的訓練課

當中,都要去看看有沒有比上一課跑得快。 況且,進度也並非完全取決於是否比上一 課跑得快。進行同樣內容的訓練課時,如 果做起上來比過往顯得輕鬆和容易,其實 就已經足以證明比前進步了。

2. 學習「配速」

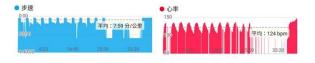
除了想看看自己的進度外,我們有時 亦希望學習一下如何按著特定的速度(亦 即「配速」)去跑,這時,就當然要用上計 時工具了。

3. 測量脈搏以檢視訓練強度

當我們跑步的時候,跑得越快,亦即 強度越高,對呼吸系統及心血管系統的需 求也會變得越高。因此,心率和脈搏都會 隨著訓練強度的增加而不斷上升,直至到 達「最高心率」為止。所以,如果能夠知 道自己的「最高心率」(不過通常都要在實 驗室裡面才能夠準確量度得到),就可以 透過測量脈搏而知道正在處於甚麼訓練 強度了。

4. 記錄、分析及分享訓練數據

筆者在學生時代(亦即 1970 年代)時,最常用的計時工具,就是有計時功能的電子跳字手錶或者是當時比較專業的計時秒錶。不過,時至今日,已經有各式各樣的多功能手錶或智能手表,有些還有測量脈搏的功能。至於一些特別為跑步而設計的手錶,就更可以提供不少額外與跑


步相關的數據,如心率、步幅、配速、段速、配速、段速、對分析調等,對分析訓練課和比賽的表現都很有幫助。

此外,這些數據還可以被儲存到雲端,除了可以作為自己的個人記錄及用作數據分析之外,還可以和教練、隊友及朋友一同分享,以便互相支持和鼓勵。

就以筆者的其中一節訓練課為例:「先跑 12 個 200 米,每個之間慢跑 1 分 30 秒,前 6 個跑 41-44 秒之間,後 6 個跑 38-40 秒之間;休息 10 分鐘後;再以 1500 米的配速去跑一個 800 米。」

從跑步手錶收集到的數據所造成的圖表之中,就可以很快看到一些整體的表現。例如,在12 x 200 米的間歇跑階段,快跑時心率會上升,慢跑時心率會下降;但在800 米的連續跑階段,心率從開始便一直持逐地上升。

另外,間歇跑的時候,快跑時步幅和步頻都會增加,慢跑時兩者都會減少;800 米連續跑的時候,步幅和步頻都比較穩定, 直至去到最後衝刺的時候,兩者才再度增加。

從手錶收集到的數據當中,我們就可以觀察到訓練時的配速是否能按照計劃進行。例如,前6個200米跑是否都在41-44秒之內完成;後6個200米跑是否都在38-40秒之內完成;跑與跑之間的休息又有沒有超過1分30秒等。

個	時間	累計時間	移動時間	距離					
1	0:43.9	0:43.9	0:41	0.20	15	0:40.5	15:27	0:39	0.20
2	1:23.4	2:07.3	1:12	0.08	16	1:25.5	16:53	1:14	0.09
3	0:42.0	2:49.3	0:38	0.20	17	0:41.2	17:34	0:40	0.20
4	1:23.6	4:12.9	1:23	0.09	18	1:25.7	19:00	1:25	0.09
5	0:42.6	4:55.5	0:41	0.20	19	0:40.4	19:40	0:39	0.20
6	1:23.0	6:18.4	1:22	0.09	20	1:26.5	21:07	1:26	0.10
7	0:43.4	7:01.9	0:43	0.20	21	0:38.9	21:46	0:38	0.20
8	1:24.6	8:26.5	1:23	0.09	22	1:27.8	23:13	1:26	0.10
9	0:41.5	9:08.0	0:41	0.20	23	0:40.0	23:53	0:39	0.20
10	1:25.7	10:34	1:25	0.10	24	10:15	34:08	5:11	0.40
11	0:41.0	11:15	0:40	0.20	25	1:25.4	35:33	1:21	0.40
12	1:25.9	12:41	1:25	0.09	26	1:17.2	36:51	1:17	0.41
13	0:39.9	13:20	0:38	0.20	27	0:05.0	36:56	0:04	0.01
14	1:26.5	14:47	1:26	0.10	要資訊	36:56	36:56	30:57	4.63

此外,我們亦可藉著數據去分析一下 自己的步幅和步頻是否夠穩定。如果步幅 並沒有太大改變的話,每一次快跑的平均 步頻與最高步頻越接近,就表示快跑時的 步速越均勻,亦即是沒有時快時慢了。不 過,如果是做加速跑的話,每次快跑的平 均步頻與最高步頻就會相差得較遠。

最大心率	平均步頻	最高步頻	平均步幅				
136	168	178	1.49	134	174	184	1.58
137	108	167	0.72	140	122	171	0.62
136	168	180	1.55	135	173	180	1.60
137	132	169	0.57	140	126	171	0.59
138	169	177	1.56	135	173	181	1.56
139	133	170	0.60	139	125	174	0.64
137	167	178	1.49	119	178	192	1.66
138	132	168	0.57	135	121	176	0.68
136	167	178	1.49	136	174	181	1.65
137	131	174	0.60	134	85	248	0.53
135	171	185	1.57	139	170	186	1.65
137	131	172	0.60	150	181	188	1.74
134	174	186	1.58	146	155	178	2.19
138	134	174	0.62	150	129	248	0.90

通常跑的速度越快,步幅越大,步頻 也越高。一般來說,當加速的時候,都是 會很自然地先加大步幅,隨後才會在沒法 子再加大步幅之下去加快步頻。

第一章: 裝備篇

視乎手錶的品牌和型號,有些還可以 記錄到:

- 1. 垂直振幅(身體上下跳動幅度);
- 2. 平均觸地時間(腳平均著地時間);及
- 3. 平均 GCT 平衡 (兩腳接觸地面的時間 比例)。

例如,如果左、右腳接觸地面時間比例的 相差太大的話,就可能有腿部或者腳部受 傷的情況了。

重直振幅	平均 GCT 平衡	平均觸地時間			
8.6	51.6% 左 / 48.4% 右	211	7.7	48.0% 左 / 52.0% 右	206
4.4	50.4% 左 / 49.6% 右	256	4.7	50.5% 左 / 49.5% 右	263
8.1	51.0% 左 / 49.0% 右	211	8.1	52.3% 左 / 47.7% 右	207
5.4	51.0% 左 / 49.0% 右	245	4.8	50.1% 左 / 49.9% 右	338
8.5	51.3% 左 / 48.8% 右	222	7.8	50.2% 左 / 49.8% 右	210
5.0	51.1% 左 / 48.9% 右	253	4.9	50.4% 左 / 49.6% 右	292
8.8	51.8% 左 / 48.2% 右	233	7.5	50.9% 左 / 49.1% 右	205
5.6	50.9% 左 / 49.1% 右	267	4.5	50.7% 左 / 49.3% 右	253
7.7	51.9% 左 / 48.1% 右	214	7.5	50.2% 左 / 49.8% 右	206
5.4	50.7% 左 / 49.3% 右	249	2.7	50.7% 左 / 49.3% 右	363
7.7	52.0% 左 / 48.0% 右	219	8.3	50.3% 左 / 49.7% 右	218
5.5	51.3% 左 / 48.7% 右	241	7.4	50.9% 左 / 49.1% 右	198
7.9	48.5% 左 / 51.5% 右	229	10.3	51.3% 左 / 48.7% 右	235
5.4	50.4% 左 / 49.6% 右	249	5.4	50.8% 左 / 49.3% 右	221

個人認為,練習跑步的時候,都應該 盡量配戴有計時工能的手錶,否則就很難 建立速度感了。而且,最好還是花費多少 許金錢,去買一個特別為跑步訓練而設計 的手錶,因為這樣就可以收集得到更多有 用的數據,去檢討訓練計劃的成效。

口罩與高原訓練

學早前有一位英國醫生,把外科口罩一個一個地戴上,並且一邊戴一邊量度血液的含氧量,結果發現戴上六個外科口罩後,血液的含氧量仍保持在99%。隨後,另一位醫生(本身也是玩三項鐵

人的),在某一天戴著口罩跑步上班及下班,共跑了22英哩,即35公里。每當他在途中檢測血液的含氧量時,發覺都能保持在98%,所以他認為戴口罩跑步「不會」影響攝取氧氣和導至吸入過量二氧化碳,對身體做成影響。

不過要留意第一個醫生是在「靜息」的狀態下戴上多個口罩來量度血氧量,而且也只是維持了一段較短的時間。第二個醫生所戴的,看上去似是普通的布質口罩,而且也沒有說明他是以哪種強度去跑,而且那 22 英哩也是分開了兩次跑出來。

總結上面兩個實驗(由於未夠嚴僅, 所以個人認為未可算是研究)結果,戴著 口罩去跑步時,只要時間不是太長,速度 也不是太高,每課都是 5 至 6K 的「養生 跑」,只要不會令面部產生敏感,應該也不 會構成重大的健康問題。

由於「靜息」的時候,正常人每分鐘 要呼吸 16 至 18 次,每次吸入約 350 至 500 毫升的空氣,所以每分鐘的通氣量為 6 至 9 升。但當進行劇烈運動的時候,每 分鐘的通氣量可以超過 100 升,所以戴著 口罩要維持「劇烈強度」的「耐力訓練」 基本上是不太可能。

個人經驗是以7至8成力進行1小

時,甚致更長時間的「連續跑」不會有太大困難;以8至9成力做10至15個200米快200米慢的「間歇跑」(共4至6K)也不會有太大問題;但進行400米或以上較長的快「間歇跑」時,進行至尾段便會有較明顯吸不夠氧氣的感覺,並且會越跑越辛苦,甚至要

20日 下午9:44 @ 新界

放棄最後的一兩組。此外,無論是快跑或 慢跑,最大問題反而是汗液會弄濕口罩, 於是就會影響到呼吸和降低了防疫效果, 所以最好還是帶備多一個口罩以作替換。

其實,最初未習慣戴口罩跑步時,真是會頗為辛苦的,所以有些朋友打趣說: 『就當是高原訓練吧。』不過,他們只是說中了一小半。戴口罩(包括運動口罩)跑步時,因為呼吸時多了阻力,所以跑得越快,呼吸的肌肉就會越辛苦,這方面雖然可能會有點像高原訓練的感覺,但實際上卻不會收到任何高原訓練的效果。

何謂「高原訓練」?

高原訓練可以追溯至 1960 年代,而所謂「高原」則是指在海平面 2000 米以上的環境。由於高原上空氣稀薄,氧氣的含量相對地下降,所以進行耐力項目(例如長跑)時,就會感到特別辛苦。不過如果在這種環境下生活上一段時間(最少 4 至 5 個星期),身體內就會產生了一些生理反應,就是血液內的紅血球數量和血紅蛋白增加,因而提升了帶氧的能力,於是就能夠增進了耐力項目的表現(特別是剛返回海平面後)。

因此,一些耐力項目運動員,甚至會 在參與大型比賽之前,先到一些高原環境 進行一段時間的訓練,以提升他們作賽時 的表現。 高原訓練亦從早期最原始的「高住高練」演變出如「高住低練」、「低住高練」 和「間竭性呼吸低氧空氣」等訓練模式。

1. 高住高練(Live High, Train High)

西方國家的運動員,就是最先採用這個模 式去模擬東非長跑運動員的生活及訓練 狀況。

不過,由於在氣壓較低,氧氣成分較 少的高原上面,運動員往往只可以採用比 海平面較低的強度或速度來進行訓練,因 而亦影響了訓練效果。

2. 高住低練(Live High, Train Low)

所謂「高住低練」,就是返回較低的高度或海平面,才進行訓練,這樣就可以避免在高原上要被迫降低訓練強度的弊病。可是,返回海平面之後,高原住宿的生理反應一般只能夠維持3個星期左右,而且個別差異還很大,於是又發展出另一種高原訓練的模式。

3. 高睡低練(Sleep High, Train Low)

無論是採取「高住高練」還是「高住低練」的手段,都要真正前往高原地區進行住宿或訓練,始終會對運動員或教練團隊帶來不便,所以也就出現了「高睡低練」的訓練模式。

「高睡低練」的意思就是透過一些特別的設施或者裝置,去模擬高原的低氧環境。不過,運動員每天最少要有 11 至 12 小時,在這些模擬器之內起居生活,而且最少要累積上 320 至 400 小時才能見效。

雖然「高住低練」及「高睡低練」比「高住高練」能夠進行較大強度的訓練,從而較有可能提高運動表現,但在科研的角度下,始終未能避免「安慰劑效應」(placebo effect),而且成效也和「高住高練」一樣,有很大的個別差異存在(尤其在實際運動表現方面)。

4. 低住高練(Live Low, Train High)

所謂「低住高練」,就是運動員只在訓練的時段,於特制的模擬器內進行訓練。這個應該是最容易進行的訓練模式,不過,至今仍未有確實的科研證據去支持這種訓練方法,所以「低住高練」似乎只是一種商業活動居多,其訓練效果比起在海平面進行訓練亦未見有較大的優勢。

5. <u>間竭性呼吸低氧空氣</u>(Intermittent Hypoxia at Rest)

第一章:裝備篇

最後,亦有人嘗試採用一種「間竭性」呼吸「低氧」空氣的方法去進行訓練,也就是在「靜息」的狀態之下,進行間竭性呼吸「正常」和「低氧」的空氣。一般會持續進行總時間 60 至 90 分鐘,而每次呼吸「低氧」的時段,則可以低至 5 至 10 分鐘。不過,大部分的相關研究都顯示,這類的訓練模式,都未能夠提高最大攝氧量或者提高實際的運動表現。

「高原訓練」口罩?

大家都應該明白到「高原訓練」口罩「並不能」真正模擬得到高原環境之下,空氣稀薄、氧氣含量下降的情況,從而激發身體製造更多的紅血球和血紅蛋白,提升有氧運動能力。「高原訓練」口罩極其量只可以增強呼吸的肌肉,使它們更加耐勞。

參考資料

- Ali, A., Creasy, R. H., and Edge, J. A. (2011). The effect of graduated compression stockings on running performance. Journal of Strength and Conditioning Research, 25(5), 1385-1392.
- Armstrong, S. A., Till, E., Maloney, S. R., and Harris, G. A. (2015). Compression socks and functional recovery following marathon running: A randomized controlled trial. Journal of Strength and Conditioning Research, 29(2), 528-533.
- 3. Bishop, M., Fiolkowski, P., conrad, B., Brun, D., and Horodyski, M. (2006). Athletic footwear, leg

- stiffness, and running kinematics. **Journal of Athletic Training, 41**(4), 387-392.
- Bonetti, D. L. and Hopkins, W. G. (2009). Sealevel exercise performance following adaptation to hypoxia: a meta-analysis. Sports Medicine, 39(2), 107-127.
- Brophy-Williams, N., Driller, M. W., Kitic, C. M., Fell, J. W., and Halson, S. L. (2017). Effect of compression socks worn between repeated maximal running bouts. International Journal of Sports Physiology and Performance, 12(5), 621-627.
- Brown, F., Gissane, C., Howatson, G., van Someren, K., Pedlar, C., and Hill, J. (2017). Compression garments and recovery from exercise – A meta-analysis. Sports Medicine, 47(11), 2245-2267.
- Clinghan, R., Arnold, G. P., Drew, T. S., Cochrane, L. A., and Abboud, R. J. (2008). Do you get value for money when you buy an expensive pair of running shoes? British Journal of Sports Medicine, 42, 189-193.
- Cook, S. D., Kester M. A., and Brunet, M. E. (1985). Shock absorption characteristics of running shoes. American Journal of Sports Medicine, 13(4), 248-253.
- Davies, V., Thomson, K., and Cooper, S-M. (2009). The effects of compression garments on recovery. Journal of Strength and Conditioning Research, 23(6), 1786-1794.
- Duffield, R., Edge, J., Merrells, R. Hawke, E., Barnes, M., Simcock, D., and Gill, N. (2008). The effects of compression garments on intermittent exercise performance and recovery on consecutive days. International Journal of Sports Physiology and Performance, 3, 454-468.
- 11. Engel, F. A., Holmberg, H-C, and Sperlich, B. (2016). Is there evidence that runners can benefit from wearing compression clothing? **Sports Medicine, 46**(12), 1939–1952.
- Fletcher, L., Raab, S., Sanderson, S., and Vargo, L. (2014). Efficacy of compression socks to enhance recovery in distance athletes. Sport and Art, 2(2), 15-18.
- Goh, S. S., Laursen, P. B., Dascombe, B., and Nosaka, K. (2011). Effect of lower body compression garments on submaximal and maximal running performance in cold (10°C) and hot (32°C) environments. European Journal of Applied Physiology, 111, 819–826.

- Gonzalez, R. R. (1995). Biophysics of heat exchange and clothing: Applications to sports physiology. Medicine, Exercise, Nutrition and Health, 4, 290-305.
- Hamill, J., Russell, E. M., Gruber, A. H., and Miller, R. (2011). Impact characteristics in shod and barefoot running. Footwear Science, 3(1), 33-40.
- 16. Havenith, G. (2003). Clothing and thermoregulation. **Current Problems in Dermatology, 31**, 35-49.
- Hill, J. A., Howatson, G., van Someren, K. A., Walshe, I., and Pedlar, C. R. (2017). Influence of compression garments on recovery after marathon running. Journal of Strength and Conditioning Research, 28(8), 2228-2235.
- Hill, J., Howatson, G., van Someren, K., Leeder, J., and Pedlar, C. (2014). Compression garments and recovery from exercise-induced muscle damage: A meta-analysis. British Journal of Sports Medicine, 48(18), 1340-1346.
- Kemmler, W., Stengel, S. V., Kockritz, C., Mayhew, J., Wassermann, A., and Zapf, J. (2009). Effect of compression stockings on running performance in men runners. Journal of Strength and Conditioning Research, 23(1), 101-105.
- Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., Andrea, S. D., Davis, I. S., Mang'Eni, R. O., and Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(28), 531-536.
- Lovell, D. I., Mason, D. G., Delphinus, E. M., and McLellan, C. P. (2011). Do compression garments enhance the active recovery process after high-intensity running? Journal of Strength and Conditioning Research, 25(12), 3264-3268.
- Lundby, C., Millet, G. P., Galbet, J. A., Bartsch, P., and Subudhi, A. W. (2012). Does 'altitude training' increase exercise performance in elite athletes? British Journal of Sports Medicine, 46, 792-795.
- MarRae, B.A., Cotter, J. D., and Laing, R. M. (2011). Compression garments and exercise: Garment considerations, physiology, and performance. Sports Medicine, 41(10), 1-29.
- 24. Nigg, B. (2009). Biomechanical considerations on barefoot movement and barefoot shoe concepts. **Footwear Science**, **1**(2), 73-79.

- 25. Noakes, T. (2003). **Lore of Running (4th Ed.)**. Champaign, IL: Human Kinetics.
- 26. Novacheck, T. F. (1997). The biomechanics of running. **Gait and Posture**, **7**, 77-95.
- 27. Pascoe, D. D. (2005). Dress for the heat. **ACSM** Fit Society Page, Summer 2005, 3-4.
- Ploszczyca, K., Langfort, J., and Czuba, M. (2018). The effects of altitude training on erythropoietic response and hematological variables in adult athletes: A narrative review. Frontiers in Physiology, 9(375), doi: 10.3389/fphys.2018.00375.
- Robbins, S., and Waked, E. (1997). Hazard of deceptive advertising of athletic footwear.
 British Journal of Sports Medicine, 31, 299-303.
- Squadrone, R., and Gallozzi, C. (2009).
 Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. The Journal of Sports Medicine and Physical Fitness, 49, 6-13.
- Stray-Gundersen, J., Chapman, R. F., and Levine, B. D. (2001). "Living high-training low" altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 91, 1113-1120.
- Tam, N., Wilson, J. L. A., Noakes, T. D., and Tucker, R. (2014). Barefoot running: an evaluation of current hypothesis, future research and clinical applications. British Journal of Sports Medicine, 48, 349-355.
- Vercruyssen, F., Gruet, M., Colson, S., Ehrstrom, S., and Brisswalter, J. (2016). Compression garments, muscle contractile function and economy in trail runners. International Journal of Sports Physiology and Performance, 12(1), 62-68.
- Zaleski, A. L., Panza, G. A., Ballard, K. D., Adams, W. M., Hosokawa, Y., Pescatello, L. S., Thompson, P. D., and Taylor, B. A. (2019). The influence of compression socks during a marathon on exercise-associated muscle damage. Journal of Sport Rehabilitation, 28(7), 724-728.